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1 INTRODUCTION

Data visualizations are a powerful way to gain insight from data,
which is an increasingly important activity in the present context
of our data-driven world. Decision-making in personal, industry,
research, and governmental contexts relies on access to data and
visualizations. However, excluding people with disabilities from
access to data creates gaps in job opportunities, civic engagement,
and quality of life.

Yet making data visualizations accessible for users with disabil-
ities remains a difficult task for designers, especially those without
lived experience with a disability. Sighted visualization designers,
as one example, must first gain an understanding of ways that their
current designs produce barriers for people who are blind, then they
must either learn to use new tools or learn to adapt the tools that they
have in order to build more accessible artifacts. The design, inspec-
tion, and development of non-visual experiences presently requires
the practitioner to conduct non-visual tasks using audio-based tools,
such as a screen reader.

Our research aims are to study technological interventions on
practitioner work in the domain of data visualization, towards more
accessible outcomes for people with disabilities who use and inter-
act with the data interfaces and artifacts that practitioners produced.
We assert that practitioners who design and develop interactive data
visualizations are the last people responsible for the exclusion of
people with disabilities. We aim to examine how resources, tech-
niques, and tools can shift the behavior of these practitioners.

However, some of the gaps in our knowledge center on what bar-
riers practitioners themselves face. Do they lack knowledge about
what is or is not a barrier that excludes people with disabilities from
participating in the use of a data visualization? Would they be more
successful with this knowledge? Do practitioners lack the correct
building blocks and substrates for creating visualizations that are
accessible? Would they be more successful with better tools and
materials? Or perhaps do practitioners lack consideration for the
ways that end users want to customize or fit their experiences?
What if data practitioners are blind and performing analysis for
themselves? How would their tooling differ?

In prior work, we explored these gaps. Our initial project,
Chartability, provided practitioners with a framework of heuristics
for evaluating the accessibility of interactive data representations
that they were authoring, so that they would have the knowledge to
produce more accessible visualizations. We then developed a soft-
ware tool, Data Navigator, which provides more robust building
blocks for practitioners to assemble non-visual, navigational expe-
riences for users of assistive technologies. Our Softerware project
explored how system developers can build interactive data repre-
sentations that end users are able to manipulate and customize to
suit their accessibility needs. And our latest project, a novel physi-
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cal input device called the cross-feelter, improved the speed of task
completion and quantity of data queries of blind people when ex-
ploring and analyzing data.

However, gaps in our knowledge of practitioner needs still re-
main. In particular, we believe that practitioners without disabilities
still face barriers when interpreting their own design and develop-
ment decisions for users with disabilities.

This document culminates in a proposal for Skeleton, a develop-
ment and de-bugging tool built on top of Data Navigator. Skeleton
will be designed to visually represent non-visual navigation and in-
teraction experiences, which we conjecture will assist sighted de-
signers in rapidly prototyping and fixing custom screen reader ex-
periences for diagrams, maps, and bespoke visualizations. We hy-
pothesize that by enabling visual inspection and iterative design,
Skeleton will not only speed up the development process but also
serve as an educational resource for understanding non-visual data
interactions.

2 RELATED WORK
2.1 Tool-making in Human-Computer Interaction

In human-computer interaction, tool-making research spans both
the creation of entirely new capabilities and the enhancement of
existing systems. One prominent approach involves piggybacking
on current systems—Ileveraging their established functionalities to
introduce improvements that streamline workflow or unlock new
interactions [14].

Another significant approach centers on the notion of appropria-
tion [48, 7, 6, 39]. Here, research examines how users adapt tools
for uses beyond their original intent. In some cases, theory has
been developed from the study of emergent and generative tool-
use [3, 1], broadly informing future tooling projects as well as gen-
eral theories of creative human interaction with technology.

Beyond these, tool-making in HCI also includes the development
of systems designed to empower users by providing entirely new
capabilities, sometimes explicitly named “toolkits” and other times
generally just referred to for their ability to enable novel interac-
tion and outcomes [40, 38, 44, 28]. These projects may range from
novel software environments that facilitate rapid prototyping and
live programming to innovative hardware devices that bridge the
gap between digital and physical interactions [38, 18, 20]. The em-
phasis is not solely on problem-solving but on enabling creative ex-
ploration, new possibilties, and even hacking the potential of tech-
nologies towards new ends [19].

2.2 Interactive Data Visualization and Data Science

Recent years have witnessed significant advancements in interac-
tive data science and visualization, driven by innovations that en-
hance both the performance and usability of data tools.
Cross-filtering, as a subtype of cross-linked interaction, has
emerged as a powerful technique, enabling users to interact with
multiple data dimensions simultaneously [16, 2, 50, 30]. Stress has
been placed in recent years on developing fast systems that that re-
duce latency in user interaction as much as possible [30, 17, 52].
Automated data processing and cleaning have revolutionized
workflows by reducing the time spent on manual data wran-



gling [10]. Enhanced computational frameworks and optimized li-
braries allow for real-time data manipulation, making interactive vi-
sualization more responsive [17]. Coupled with easier-to-use gram-
mars and scripting languages, these tools enable users to generate
complex, interactive, visual representations of data [41]. New visu-
alization types and techniques—ranging from dynamic dashboards,
faceting, to immersive 3D visualizations—offer novel ways to ex-
plore and interpret data [52].

2.3 Data Interaction and Accessibility

Research and standards at the intersection of accessibility and data
interaction are both somewhat limited by a strong bias towards vi-
sual disabilities [51, 21, 34, 47, 53], leaving the barriers that many
other demographics face unstudied. In Chartability, 36 of the 50
criteria related to accessible visualization considerations involve vi-
sual disabilities [8, 11]. Accessibility research broadly shares this
bias, focusing on users with visual disabilities [33].

Since the 1990s, the most prominent and active accessibility
topic in data has been color vision deficiency in data visualiza-
tion [4, 36, 37, 29, 35]. Research projects that explore tactile
sensory substitutions to charts have been a topic in computational
sciences dating back to the 1983 [12, 31], with tactile sensory
substitutions being used for maps and charts as far back as the
1830s [15]. More recent work investigated how to better under-
stand the role of sensory substitution for interactive data visualiza-
tions [5, 55, 23, 45].

Some more recent work has explored robust screen reader data
interaction techniques [13, 46, 54, 49], screen reader user expe-
riences with digital, 2-D spatial representations, including data
visualizations [42, 43, 26, 25, 27, 11], and dug deeper into the
semantic layers of effective chart descriptions [32]. A wide ar-
ray of emerging research projects investigate blind and screen
reader users needs, barriers, and preferences, and offer guidelines,
models, and considerations for creating accessible data visualiza-
tions [43, 5, 11, 24,22, 54, 9, 55].

3 PRELIMINARY WORK
3.1 Chartability: Heuristics as a Tool and Resource

This section was adapted from my published paper: F.
Elavsky, C. Bennett, and D. Moritz, ‘How accessible is
my visualization? Evaluating visualization accessibility
with Chartability’, Computer Graphics Forum, vol. 41,
no. 3, pp. 57-70, Jun. 2022.
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Figure 1: Example evaluation of a visualization: an interactive chart
displaying only “Image” as semantic information to a screen reader is
instead changed to show the correct semantics “toggle button” (mid-
dle) as well as provide instant feedback, “selected” (right) during in-
teraction.

Novices and experts have struggled to evaluate the accessibility
of data visualizations because there are no common shared guide-
lines across environments, platforms, and contexts in which data

visualizations are authored. Between non-specific standards bodies
like WCAG, emerging research, and guidelines from specific com-
munities of practice, it is hard to organize knowledge on how to
evaluate accessible data visualizations.

We present Chartability, a set of heuristics synthesized from
these various sources which enables designers, developers, re-
searchers, and auditors to evaluate data-driven visualizations and
interfaces for visual, motor, vestibular, neurological, and cognitive
accessibility. In our work, we outline our process of making a set of
heuristics and accessibility principles for Chartability and highlight
key features in the auditing process.

3.1.1  Preliminary Results

Working with participants on real projects, we found that data prac-
titioners with a novice level of accessibility skills were more confi-
dent and found auditing to be easier after using Chartability. Ex-
pert accessibility practitioners were eager to integrate Chartabil-
ity into their own work. Reflecting on Chartability’s development
and the preliminary user evaluation, we discuss tradeoffs of open
projects, working with high-risk evaluations like auditing projects
in the wild, and challenge future research projects at the intersection
of visualization and accessibility to consider the broad intersections
of disabilities.

3.2 Data-Navigator: Accessibility Tooling for Visualiza-
tion Toolmakers

This section was adapted from my published paper:
F. Elavsky, L. Nadolskis, and D. Moritz, ‘Data Nav-
igator: An Accessibility-Centered Data Navigation
Toolkit’, IEEE Transactions on Visualization and Com-
puter Graphics, pp. 1-11, 2023.
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Figure 2: Data Navigator provides data visualization libraries and
toolkits with accessible data navigation structures, robust input han-
dling, and flexible semantic rendering capabilities.

Making data visualizations accessible for people with disabili-
ties remains a significant challenge in current practitioner efforts.
Existing visualizations often lack an underlying navigable struc-
ture, fail to engage necessary input modalities, and rely heavily on
visual-only rendering practices. These limitations exclude people
with disabilities, especially users of assistive technologies.

To address these challenges, we present Data Navigator: a sys-
tem built on a dynamic graph structure, enabling developers to con-
struct navigable lists, trees, graphs, and flows as well as spatial,
diagrammatic, and geographic relations. Data Navigator supports
a wide range of input modalities: screen reader, keyboard, speech,
gesture detection, and even fabricated assistive devices.

3.2.1 Preliminary Results

We present 3 case examples with Data Navigator, demonstrating
we can provide accessible navigation structures on top of raster im-
ages, integrate with existing toolkits at scale, and rapidly develop



novel prototypes. Data Navigator is a step towards making acces-
sible data visualizations easier to design and implement.

3.3 Softerware: Building Tools for Accessibility and
Personalization

This section was adapted from my paper, currently un-
der review with CG&A: F. Elavsky, M. Vindedal, T.
Gies, P. Carrington, D. Moritz, and @. Moseng, ‘To-
wards softerware: Enabling personalization of inter-
active data representations for users with disabilities’,
Computer Graphics and Applications (to appear at [EEE
VIS 2026), 2025.
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Figure 3: Sometimes one design is not enough. Our design (up-
per left) and three different designs by low vision users. All low vi-
sion users chose larger text, but then diverged: redundant-encoding
enabled (upper right), high zoom and greyscale on white (bottom
left), and then dark mode (enabled externally) with greyscale (bot-
tom right).

Accessible design for some may still produce barriers for others.
This tension, called access friction, creates challenges for both de-
signers and end-users with disabilities. To address this, we present
the concept of softerware, a system design approach that provides
end users with agency to meaningfully customize and adapt inter-
faces to their needs.

To apply softerware to visualization, we assembled 195 data vi-
sualization customization options centered on the barriers we ex-
pect users with disabilities will experience. We built a prototype
that applies a subset of these options and interviewed practitioners
for feedback. Lastly, we conducted a design probe study with blind
and low vision accessibility professionals to learn more about their
challenges and visions for softerware.

3.3.1  Preliminary Results

We observed access frictions between our participant’s designs and
they expressed that for softerware’s success, current and future sys-
tems must be designed with accessible defaults, interoperability,
persistence, and respect for a user’s effort-to-outcome ratio.

3.4 Cross-feelter: Tool-making for Blind Data Science

This section was adapted from my paper, currently un-
der review with IEEE VIS: F. Elavsky, Y. Li, P. Car-
rington, and D. Moritz, ‘Cross-feeltering: A principled
tactile design approach for blind linked data interac-
tion’, IEEE Transactions on Visualization and Computer
Graphics, 2025.

Figure 4: Interaction and perception in one space while being able
to perceive output in a separate space is the cornerstone of cross-
filtering. Our prototype cross-feelter (left) can manipulate a visual
cross-filter on one visualization (middle) in order to produce output in
a separate visualization, as a tactile graphic (right).

Cross-filtering is a widely-used interactive data science tech-
nique that helps sighted users visually filter, build hypotheses,
find correlations, compare distributions, and explore relationships
quickly. However, blind individuals face substantial challenges
when cross-filtering due to the limits of screen readers, which en-
able input and output on only one discrete element at a time; a time-
consuming process that limits ideation and exploration.

We propose a tactile interaction approach that enables users to
perceive the input they are providing while also focusing their at-
tention on a separate output space, such as a screen reader, tac-
tile display, or sonification. We mirror existing principles in visual
cross-filtering, such as providing cross-linked input and output and
facilitating fast, dynamic, user-driven interaction.

We present a novel prototype device called the cross-feelter that
demonstrates our design approach as well as an analytical environ-
ment for testing our device. We evaluate our approach in a within-
subjects study with 15 blind individuals who either have existing
(7) or no (8) professional data expertise.

3.4.1 Preliminary Results

In our quantitative evaluation, we find that using our prototype
with a braille display compared to a screen reader and braille dis-
play greatly improves speed (+90%) and quantity of computational
(+188%) and spoken (+54%) exploratory queries produced by our
participants. Users also self-report that our approach greatly im-
proves enjoyment and reduces perceived stress and anxiety when
working with data, especially among our participants without prior
professional data analysis experience. We conclude with further use
cases of tactile cross-interaction that our design approach enables.

Our work expands cross-filtering into non-visual modalities,
demonstrating how tactile interaction can inherit the analytical
power of linked visualizations for blind data scientists.

4 (ProPOSED WORK) Skeleton: VISUAL TOOLING FOR
NON-VISUAL DATA EXPERIENCES

In our previous work we built Data Navigator, a tool for assem-
bling non-visual data interfaces. Despite the existence of this tool,
key gaps still persist: Ironically, making visualizations accessible
in non-visual ways poses accessibility barriers for sighted practi-
tioners, who may not be able to easily understand, build, and debug
screen reader experiences for people who are blind.

This research proposes Skeleton, a tool that visualizes non-visual
navigation paths, semantic structures, and screen reader interactions
in data visualizations. By rendering these invisible experiences vi-
sually, Skeleton seeks to bridge the cognitive gap for sighted prac-
titioners, enabling them to more easily inspect, debug, and author
accessible experiences during development.

4.1 Approach

First our approach will be to investigate existing tooling that ex-
plores making non-visual experiences visual, and if any existing



Figure 5: Low-fidelity design draft of Skeleton’s main user interface
components and interactions. A. Skeleton, our graphical user in-
terface for creating and debugging screen reader navigation expe-
riences of data visualizations. B. Users can add nodes wherever
they want over the chart, manually or automatically with algorithmic
assistance. C. Users can then "draw” edges between nodes, which
signify navigation paths through the visualization.

projects explore this with accessibility and software development
goals in mind.

Second, we will develop a graphical user interface for Skeleton
that builds on Data Navigator’s underlying graph-based substrate
for scaffolding navigable, interactive data structures (see Figure 5).
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Figure 6: Design draft of user flow in Skeleton: adding a chart or
data, adding nodes and edges manually or with Al-assistance, and
code exporting capabilities.

Users will be able to edit nodes manually (see B. in Figure 5) by
directly clicking on visual “add nodes” interface elements and then
directly clicking on their visualization where those nodes should
exist. The exact location of nodes is shown in the main element
inspector while the schema (abstract representation) of those nodes
will be reflected in a schema inspector (shown on the left in Fig-
ure 5). Nodes that are selected in either view will be shown in high
contrast (black) as selected in both views.

And users will be able to add edges using our edges drawing
tool. This will enable users to drag a visible line to connect between
nodes or add connections between all nodes in a selection. Edges
can be drawn between nodes in both the main view or the schema
inspector (see C. in Figure 5). Rules for navigation (direction, etc)
will be automatically generated, up to a limit, but users will always
be able to edit these features using the Details Inspector (shown on
the right side of the interface).

Our interface tool will allow 2 different kinds of input: (1) data,
in a standard JSON format (array of objects) or (2) as a rasterized
image (png, jpg, etc). If users upload data, they can choose to ren-

der a simple visualization from it using vega-lite. Users will then
be able to choose to either manually or “automatically” build navi-
gation (with Al-assistance). Even when using assistance, users will
always be able to tweak and override the model’s decisions (see:
Figure 6). Lastly, users can export the code generated by the sys-
tem for use in their own environments.

4.2 Evaluation

Our research will address three questions: (1) What conceptual bar-
riers arise when practitioners use visual tools to design non-visual
experiences? (2) How can visual representations of non-visual in-
terfaces improve practitioners’ design decisions? (3) How might
practitioners identify and resolve accessibility barriers during visu-
alization authoring?

To evaluate our work, we will provide a sandbox prototyping
experience to 12 sighted designers and observe how they work to
make their own diagrams, maps, and bespoke visualizations acces-
sible to navigational assistive technologies, in addition to perform-
ing a debugging task for a screen reader experience of our design.
We will then conduct a qualitative interview with our practition-
ers, using our sandbox session as a probe to help us learn more
about what ways a visual tool that constructs non-visual experi-
ences could be improved.

5 QUESTIONS FOR THE PANEL

* How might I best frame the dual purpose of Skeleton as both
a development/de-bugging tool and an epistemic aid for un-
derstanding non-visual data interactions?

* Are there examples in HCI or VIS where visual representa-
tions have been successfully used to help practitioners under-
stand non-visual experiences? How might I learn from or dif-
ferentiate Skeleton from them?

* Do you see any methodological or conceptual risks in design-
ing accessibility tools primarily for sighted developers?

* How can I effectively evaluate whether Skeleton supports not
just efficiency, but critical reflection and learning about acces-
sibility among practitioners?

e Given the speculative and systems-level implications of
Skeleton and Softerware, how might I build a stronger bridge
between tool-making and theory-building in my dissertation?

¢ In which ways, if at all, should I prepare to discuss my work
in light of LLMs, which have become utterly ubiquitous in
scholarly imagination of HCI tools” and systems?

6 CONCLUSION

Our proposed research will provide empirical insights into prac-
titioner challenges in accessibility-focused design and the role of
visual aids in mitigating them. It will refine Skeleton to better
align with practitioners’ workflows, enhancing their capacity to
build inclusive visualizations. A theoretical framework will also
emerge, emphasizing bidirectional translation between visual and
non-visual experiences in authoring tools, which we hope will in-
spire other environments (such as within PDFs and web develop-
ment) to follow suit.

By equipping practitioners with tools to visualize and address
the design and development of non-visual experiences of data, this
work aims improve design practices, foster better design collab-
oration between sighted and blind individuals, and inspire new
technological developments in accessibility tooling. Our outcomes
could transform how accessible data interfaces are created, foster-
ing greater equity in data-driven decision-making for users with
disabilities. Aligning with broader goals of digital inclusion, our
research ensures that data’s transformative potential is accessible
everyone, including people with disabilities.



REFERENCES

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Beaudouin-Lafon, S. Bgdker, and W. E. Mackay. Generative the-
ories of interaction. ACM Transactions on Computer-Human Interac-
tion, 28(6):1-54, Nov. 2021. doi: 10.1145/3468505 1

R. A. Becker and W. S. Cleveland. Brushing scatterplots. Tech-
nometrics, 29(2):127-142, May 1987. doi: 10.1080/00401706.1987
10488204 1

D. Bennett, A. Dix, P. Eslambolchilar, F. Feng, T. Froese, V. Kostakos,
S. Lerique, and N. van Berkel. Emergent interaction: Complexity,
dynamics, and enaction in hci. In Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing Systems, CHI °21,
p. 1-7. ACM, May 2021. doi: 10.1145/3411763.3441321 1

A. Chaparro and M. Chaparro. Applications of Color in Design
for Color-Deficient Users. Ergonomics in Design, 25(1):23-30, Jan.
2017. Accessed: 2021-09-06. doi: 10.1177/1064804616635382 2

P. Chundury, B. Patnaik, Y. Reyazuddin, C. Tang, J. Lazar, and
N. Elmqvist. Towards Understanding Sensory Substitution for Ac-
cessible Visualization: An Interview Study. IEEE transactions on vi-
sualization and computer graphics, 28(1):1084—1094, Jan. 2022. doi:
10.1109/TVCG.2021.3114829 2

A. Dix. Designing for appropriation. In Electronic Workshops in Com-
puting. BCS Learning & Development, Sept. 2007. doi: 10.14236/
ewic/hci2007.53 1

S. Draxler, G. Stevens, M. Stein, A. Boden, and D. Randall. Sup-
porting the social context of technology appropriation: on a synthesis
of sharing tools and tool knowledge. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI *12, p.
2835-2844. ACM, May 2012. doi: 10.1145/2207676.2208687 1

F. Elavsky, C. Bennett, and D. Moritz. How accessible is my vi-
sualization? evaluating visualization accessibility with chartability.
Computer Graphics Forum, 41(3):57-70, June 2022. doi: 10.1111/
cgf.14522 2

F. Elavsky, L. Nadolskis, and D. Moritz. Data navigator: An
accessibility-centered data navigation toolkit. /IEEE Transactions on
Visualization and Computer Graphics, p. 1-11, 2023. doi: 10.1109/
tveg.2023.3327393 2

W. Epperson, V. Gorantla, D. Moritz, and A. Perer. Dead or alive:
Continuous data profiling for interactive data science. IEEE Transac-
tions on Visualization and Computer Graphics, p. 1-11, 2023. doi: 10
.1109/tveg.2023.3327367 2

D. Fan, A. F. Siu, H. Rao, G. S.-H. Kim, X. Vazquez, L. Greco,
S. O'Modhrain, and S. Follmer. The accessibility of data visualizations
on the web for screen reader users: Practices and experiences during
COVID-19. ACM Transactions on Accessible Computing, 16(1):1-29,
Mar. 2023. doi: 10.1145/3557899 2

F. A. Geldard, W. Schiff, and E. Foulke. Tactual Perception: A Source
Book. Cambridge University Press, 1983. doi: 10.2307/1422824 2
A. J. R. Godfrey, P. Murrell, and V. Sorge. An Accessible Interaction
Model for Data Visualisation in Statistics. In K. Miesenberger and
G. Kouroupetroglou, eds., Computers Helping People with Special
Needs, vol. 10896, pp. 590-597. Springer International Publishing,
Cham, 2018. Accessed: 2021-10-12. doi: 10.1007/978-3-319-94277
-3.922

C. Grevet and E. Gilbert. Piggyback prototyping: Using existing,
large-scale social computing systems to prototype new ones. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, CHI ’15, p. 4047-4056. ACM, Apr. 2015. doi:
10.1145/2702123.2702395 1

J. Hale. Extensive digitization of tactile map collection, 2016. Perkins
Archives Blog, Perkins School for the Blind. July 2016. Accessed:
2022-02-23. 2

J. Heer and M. Agrawala. Design considerations for collaborative
visual analytics. In 2007 IEEE Symposium on Visual Analytics Science
and Technology, p. 171-178. IEEE, Oct. 2007. doi: 10.1109/vast.2007
14389011 1

J. Heer and D. Moritz. Mosaic: An Architecture for Scalable & Inter-
operable Data Views. IEEE Transactions on Visualization and Com-
puter Graphics, pp. 1-11, 2023. doi: 10.1109/TVCG.2023.3327189
1,2

(18]

(19]

(20]

[21]

[22]

[23]

[24]

(25]

[26]

(27]

(28]
[29]

(30]

(31]

[32]

[33]

[34]

J. Herskovitz, Y. FE. Cheng, A. Guo, A. P. Sample, and M. Nebeling.
Xspace: An augmented reality toolkit for enabling spatially-aware dis-
tributed collaboration. Proceedings of the ACM on Human-Computer
Interaction, 6(ISS):277-302, Nov. 2022. doi: 10.1145/3567721 1

J. Herskovitz, A. Xu, R. Alharbi, and A. Guo. Hacking, switching,
combining: Understanding and supporting diy assistive technology
design by blind people. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI °23, p. 1-17. ACM,
Apr. 2023. doi: 10.1145/3544548.3581249 1

J. Herskovitz, A. Xu, R. Alharbi, and A. Guo. Programally: Cre-
ating custom visual access programs via multi-modal end-user pro-
gramming. In Proceedings of the 37th Annual ACM Symposium on
User Interface Software and Technology, UIST °24, p. 1-15. ACM,
Oct. 2024. doi: 10.1145/3654777.3676391 1

S. Hsueh, B. Vincenzi, A. Murdeshwar, and M. C. Felice. Cripping
data visualizations: Crip technoscience as a critical lens for designing
digital access. In Proceedings of the 25th International ACM SIGAC-
CESS Conference on Computers and Accessibility, pp. 1-16, 2023.
2

C. Jung, S. Mehta, A. Kulkarni, Y. Zhao, and Y.-S. Kim. Communicat-
ing visualizations without visuals: Investigation of visualization alter-
native text for people with visual impairments. /IEEE Transactions on
Visualization and Computer Graphics, 28(1):1095-1105, Jan. 2022.
doi: 10.1109/tvcg.2021.3114846 2

H. Kim, Y.-S. Kim, and J. Hullman. Erie: A declarative grammar for
data sonification. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI °24, p. 1-19. ACM, May 2024.
doi: 10.1145/3613904.3642442 2

J. Kim, A. Srinivasan, N. W. Kim, and Y.-S. Kim. Exploring chart
question answering for blind and low vision users. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems.
ACM, Apr. 2023. doi: 10.1145/3544548.3581532 2

N. W. Kim, G. Ataguba, S. C. Joyner, C. Zhao, and H. Im. Beyond
alternative text and tables: Comparative analysis of visualization tools
and accessibility methods. Computer Graphics Forum, 42(3):323—
335, June 2023. 2

N. W. Kim, S. C. Joyner, A. Riegelhuth, and Y. Kim. Accessible Vi-
sualization: Design Space, Opportunities, and Challenges. Computer
Graphics Forum, 40(3):173-188, 2021. doi: 10.1111/cgf.14298 2

N. W. Kim, S. C. Joyner, A. Riegelhuth, and Y. Kim. Accessible
visualization: Design space, opportunities, and challenges. Computer
Graphics Forum, 40(3):173-188, June 2021. doi: 10.1111/cgf.14298
2

Kitware, Inc. The Visualization Toolkit user’s guide, Jan. 2003. 1

B. Lee, E. K. Choe, P. Isenberg, K. Marriott, and J. Stasko. Reaching
broader audiences with data visualization. IEEE Computer Graph-
ics and Applications, 40(2):82-90, 2020. doi: 10.1109/MCG.2020.
2968244 2

Z. Liu and J. Heer. The effects of interactive latency on exploratory
visual analysis. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2122-2131, Dec. 2014. doi: 10.1109/tvcg.2014.
2346452 1

A. Lundgard, C. Lee, and A. Satyanarayan. Sociotechnical consid-
erations for accessible visualization design. In 2019 IEEE Visualiza-
tion Conference (VIS). IEEE, Oct. 2019. doi: 10.1109/visual.2019.
8933762 2

A. Lundgard and A. Satyanarayan. Accessible visualization via nat-
ural language descriptions: A four-level model of semantic con-
tent. [EEE Transactions on Visualization and Computer Graphics,
28(1):1073-1083, Jan. 2022. doi: 10.1109/tvcg.2021.3114770 2

K. Mack, E. McDonnell, D. Jain, L. Lu Wang, J. E. Froehlich, and
L. Findlater. What Do We Mean by Accessibility Research”? A
Literature Survey of Accessibility Papers in CHI and ASSETS from
1994 to 2019. In Proceedings of the 2021 CHI Conference on Hu-
man Factors in Computing Systems, CHI °21, pp. 1-18. Association
for Computing Machinery, New York, NY, USA, 5 2021. Accessed:
2022-02-22. 2

K. Marriott, B. Lee, M. Butler, E. Cutrell, K. Ellis, C. Goncu,
M. Hearst, K. McCoy, and D. A. Szafir. Inclusive data visualization
for people with disabilities. Interactions, 28(3):47-51, Apr. 2021. doi:



[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

10.1145/3457875 2

R. A. Martinez, M. R. Turrd, and T. G. Saltiveri. Methodology for
heuristic evaluation of the accessibility of statistical charts for people
with low vision and color vision deficiency. Universal Access in the
Information Society, Dec. 2021. doi: 10.21203/rs.3.rs-156959/v1 2
J. R. Nuiiez, C. R. Anderton, and R. S. Renslow. Optimizing col-
ormaps with consideration for color vision deficiency to enable accu-
rate interpretation of scientific data. PLOS ONE, 13(7), Aug. 2018.
doi: 10.1371/journal.pone.0199239 2

M. M. Oliveira. Towards More Accessible Visualizations for Color-
Vision-Deficient Individuals. Computing in Science Engineering,
15(5):80-87, Sept. 2013. Conference Name: Computing in Science
Engineering. doi: 10.1109/MCSE.2013.113 2

F. Pittarello and M. Semenzato. Towards a data physicalization toolkit
for non-sighted users. In 2024 IEEE 21st Consumer Communications
& Networking Conference (CCNC), p. 1-6. IEEE, Jan. 2024. doi: 10.
1109/cenc51664.2024.10454861 1

A. Salovaara. Inventing new uses for tools: A cognitive foundation
for studies on appropriation. Human Technology: An Interdisciplinary
Journal on Humans in ICT Environments, 4(2):209-228, Nov. 2008.
doi: 10.17011/ht/urn.200811065856 1

E. B.-N. Sanders and P. J. Stappers. Probes, toolkits and prototypes:
three approaches to making in codesigning. CoDesign, 2014. doi: 10.
1080/15710882.2014.888183 1

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE Transactions on Visu-
alization and Computer Graphics, 23(1):341-350, Jan. 2017. doi: 10.
1109/tveg.2016.2599030 2

A. Schaadhardt, A. Hiniker, and J. O. Wobbrock. Understanding Blind
Screen-Reader Users&#x2019; Experiences of Digital Artboards. In
Proceedings of the 2021 CHI Conference on Human Factors in Com-
puting Systems, CHI *21. Association for Computing Machinery, New
York, NY, USA, May 2021. Accessed: 2021-09-06. doi: 10.1145/
3411764.3445242 2

A. Sharif, S. S. Chintalapati, J. O. Wobbrock, and K. Reinecke. Un-
derstanding screen-reader users’ experiences with online data visual-
izations. In The 23rd International ACM SIGACCESS Conference on
Computers and Accessibility. ACM, Oct. 2021. doi: 10.1145/3441852
3471202 2

L. Shi, I. Zelzer, C. Feng, and S. Azenkot. Tickers and Talker: An
Accessible Labeling Toolkit for 3D Printed Models, pp. 4896-4907.
Association for Computing Machinery, New York, NY, USA, 5 2016.
Accessed: 2021-09-03. 1

A. Siu, G. S-H Kim, S. O’Modhrain, and S. Follmer. Supporting ac-
cessible data visualization through audio data narratives. In CHI Con-
ference on Human Factors in Computing Systems, CHI '22. ACM,
Apr. 2022. doi: 10.1145/3491102.3517678 2

V. Sorge. Polyfilling Accessible Chemistry Diagrams. In K. Miesen-
berger, C. Biihler, and P. Penaz, eds., Computers Helping People
with Special Needs, Lecture Notes in Computer Science, pp. 43-50.
Springer International Publishing, Cham, 2016. doi: 10.1007/978-3
-319-41264-1.6 2

L. South and M. A. Borkin. Photosensitive accessibility for interactive
data visualizations. IEEE Transactions on Visualization and Computer
Graphics, pp. 1-11,2022. 2

P. Tchounikine. Designing for appropriation: A theoretical account.
Human—Computer Interaction, 32(4):155-195, July 2016. doi: 10.
1080/07370024.2016.1203263 1

J. R. Thompson, J. J. Martinez, A. Sarikaya, E. Cutrell, and B. Lee.
Chart reader: Accessible visualization experiences designed with
screen reader users. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. ACM, Apr. 2023. doi: 10.
1145/3544548.3581186 2

C. Weaver. Multidimensional visual analysis using cross-filtered
views. In 2008 IEEE Symposium on Visual Analytics Science and
Technology, p. 163-170. IEEE, Oct. 2008. doi: 10.1109/vast.2008.
4677370 1

B. L. Wimer, L. South, K. Wu, D. A. Szafir, M. A. Borkin, and R. A.
Metoyer. Beyond vision impairments: Redefining the scope of acces-
sible data representations. [EEE Transactions on Visualization and

[52]

[53]

[54]

[55]

Computer Graphics, 30(12):7619-7636, Dec. 2024. 2

K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. IEEE Transactions on Visualization
and Computer Graphics, 22(1):649-658, Jan. 2016. doi: 10.1109/tvcg
.2015.2467191 1,2

K. Wu, E. Petersen, T. Ahmad, D. Burlinson, S. Tanis, and D. A.
Szafir. Understanding Data Accessibility for People with Intellectual
and Developmental Disabilities. In Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems, CHI "21, pp. 1-16.
Association for Computing Machinery, New York, NY, USA, May
2021. Accessed: 2021-09-03. doi: 10.1145/3411764.3445743 2
J.Zong, C. Lee, A. Lundgard, J. Jang, D. Hajas, and A. Satyanarayan.
Rich screen reader experiences for accessible data visualization. Com-
puter Graphics Forum, 41(3):15-27, June 2022. doi: 10.1111/cgf.
14519 2

J. Zong, 1. Pedraza Pineros, M. K. Chen, D. Hajas, and A. Satya-
narayan. Umwelt: Accessible structured editing of multi-modal data
representations. In Proceedings of the CHI Conference on Human
Factors in Computing Systems, CHI °24, p. 1-20. ACM, May 2024.
doi: 10.1145/3613904.3641996 2



	Introduction
	Related Work
	Tool-making in Human-Computer Interaction
	Interactive Data Visualization and Data Science
	Data Interaction and Accessibility

	Preliminary Work
	Chartability: Heuristics as a Tool and Resource
	Preliminary Results

	Data-Navigator: Accessibility Tooling for Visualization Toolmakers
	Preliminary Results

	Softerware: Building Tools for Accessibility and Personalization
	Preliminary Results

	Cross-feelter: Tool-making for Blind Data Science
	Preliminary Results


	(Proposed Work) Skeleton: Visual Tooling for Non-visual Data Experiences
	Approach
	Evaluation

	Questions for the Panel
	Conclusion

