
Option-Driven Design: Context, Tradeoffs,

and Considerations for Accessibility
FRANK ELAVSKY, Carnegie Mellon University, fje@cmu.edu

In this micro-paper I outline the context and working definition for option-driven design, followed by several design

negotiations, tradeoffs, and suggestions worth considering when choosing an option-driven design approach.

Fig 1: In “Option-Driven Design,” users must interact with options and settings for systems to adapt to their needs.

This approach places the burden on both the user and the system to make the interaction between user and system fit.

The user must know and find which options they need and then adjust them. In addition, the system must be capable

of robust change, similar to system change in ability-based design.

1. What is Option-Driven Design (ODD)?
Option-driven design is a design strategy to present

users with options for manipulating the default logic

and presentation of an interface system, such as through

the adjustment of settings and preferences. Generally,

when a user changes system state in this way, their

chosen options or preferences are not overridden and

will persist throughout other interactions (and even be

inherited by other systems). ODD is often used in the

context of software applications such as games, desktop

and mobile operating systems, and internet browsers.

While ODD as a practice has been ubiquitous

in computing systems for decades, an examination of

ODD from the perspective of accessibility and its

impacts is overdue. The immediate intention of this

paper is to provide clarity to designers who are

considering whether, why, and how to use ODD in a

system. The broader intention of this paper is to

stimulate new research, conversations, technical

solutions, and ideas related to options and accessibility.

2. What is the context of accessibility &
Option-Driven Design?
In contemporary accessible computing practices,

designers and developers navigate complex design

tensions, building systems that are assumed to fit to

different user abilities. This practice of a designer

engaging their own (and a system’s) “ability

assumptions” in regard to accessibility comes from the

existing work of Wobbrock et al [14]. In the design

space around ability assumptions, a designer recognizes

that a system may have been built with assumptions

about a user’s abilities (such as the user’s sight, motor

functions, and more). For example, a trackpad or mouse

is built with the assumption that the input it receives is

from a user’s hand and fingers, which are assumed to

operate in the same way according to normative

expectations that the designer has. The designer

assumes all users have hands and fingers, all of which

also operate in the same way.

These assumptions create problems for users

(see Fig 2). When users must adapt to a system’s

assumptions, the burden of interaction is placed on the

user. Users compensate in a variety of ways to fill the

gaps left by a designer’s assumptions, using different

body parts, augmentations, or behaviors than the

designer expected. Wobbrock et al propose that systems

should recognize and adapt to a user’s abilities, instead.

This approach allows users to interact however they

want, and it is up to the system to recognize whether it

needs to change and do so accordingly.

But what about systems that don’t have

awareness or when an automatic adaptation could

produce more barriers or unwanted changes?

Fig 2: (Wobbrock et al’s figure [13]) User abilities and

a system's ability assumptions: (a) user abilities match a

system's ability assumptions; (b) in assistive

technology, the user acquires an adaptation to remedy a

mismatch; and (c) in ability-based design, user abilities

drive changes in the system.

2.1 Automatically-adapting systems are not
always an appropriate design choice
In cases where one user’s fit is another user’s barrier

(which we call access friction [6]), systems must be

able to adapt. Ability-based design proposes that

systems could have sensory awareness and a degree of

decision-making or intelligence. These systems would

sense the user, their behavior, or their environment and

adapt automatically to a perceived interaction barrier.

But many computing contexts lack the

hardware capabilities to detect a user’s body and

interaction patterns. In addition, some contexts (such as

the web) are standardized to protect the privacy of

assistive technology users and obfuscate or hide which

input devices are used through layers of abstraction [8].

Programmatic detection of the user’s body and abilities

is seen as a potential privacy and security issue for

many reasons. To further this problem space, some

adaptations a system makes automatically may even

produce additional or unwanted barriers or features

without the user’s consent.

In addition, there are also important social and

contextual factors that could influence the needs of a

user or users who are interacting with a technology that

simply cannot or should not be part of a system’s

design considerations. In particular, there may be cases

where users are collaboratively or interdependently

interacting with a technology and their social dynamic

is the place where access friction is negotiated, not the

system [1]. Even in perfect hardware and software

conditions, automatic adaptation may not produce

sufficient or ideal outcomes.

2.2 Options should not compensate for
inaccessible design
The rise of accessibility options in video games in

particular in the past 2 years has led to debates on social

media about whether options should be seen as award-

worthy design on their own or not [10]. I am writing in

agreement with what Grant Stoner, Morgan Baker, Mila

Pavlin, Ian Hamilton (and others) have already written

about in terms of games to remark on broader

computing contexts as well: While accessible-by-design

is not sufficient by itself, options should not be used to

compensate for a design that was inaccessible by

default. The perspective that these accessibility folks

from the gaming industry have about games is also

applicable to many other computing contexts.

 ODD has strong advantages when accessible

designs for one user may end up producing cognitive,

functional, or presentational barriers for another user.

However, expecting users to navigate access friction

between a design’s default settings and their needs and

preferences on their own behalf has limitations.

In systems that are inaccessible, burden is

placed on the user to adapt to the system’s ability

assumptions. In ability-based design, the burden is

placed on the system to adapt to the user. But where is

the burden in ODD?

 Unfortunately, the burden is bi-directional in

option-driven design (see Fig 1). In an ODD approach,

the system must still be capable of change. This means

that a system must be designed to be technically robust,

allowing for different inputs, outputs, logic, flow,

processes, and more. However, assuming users know

which accessibility settings they need, how to find

them, and how given options help address the barriers

that exist in a system is a significant burden.

 In an ODD approach, users must be able to

know, either during the use of the system or before

using it, that something about the system is not only

insufficient but also can be changed. In my own

professional work, I often find that most users not only

assume that systems cannot be changed but are already

so used to having to adapt to systems that they are not

willing to find and manipulate system settings unless

they intend to use the system long enough or already

know that a given system can be adjusted.

 Option-driven design often has findability and

understandability burdens to overcome, in addition to

costing a user time and patience.

3. Design Considerations & Tradeoffs
The following section engages important tradeoffs for

designers to weigh when considering an options-driven

design approach.

3.1 Time-of-use is a key variable
How long will a user interact with a system? Just one

hour total, like a webpage? One hour every day,

perhaps like an email interface? A few hours a day, like

an internet browser? Or constantly, like a desktop or

mobile operating system? The time a user is expected to

spend occupying a given system is one of the most

important considerations when choosing whether ODD

is an appropriate approach.

3.1.1 Long-use contexts

When the context is a mobile or desktop operating

system, the decision to have a few options provided has

more worth to the time investment of a user. This is

especially true if all applications and additional

software within that system also inherit the same

settings (which presently is enforced better in some

ecosystems, to put it lightly).

Applications that might occupy a significant

and regular amount of time for a user, such as a social

media app or an app used for the sake of income or

employment, the benefit of adjusting options may be

worth the user’s time as well.

3.1.2 Medium-use contexts

Video games, currently an industry that commands

more revenue than all of film and music combined [12],

occupies a middle ground for ODD when considering

time-of-use. A triple-A (AAA) game may expect to

occupy a player’s time from anywhere between 10 and

400 hours (or more). Despite this wide range of use,

some award-winning AAA games have more than 60

accessibility settings [9] while others which are still

lauded for their accessibility by their players have

literally none at all [11]. All games benefit from being

accessible by design, but no two games offer the same

value to a player for the same option.

Another important consideration for games

specifically is that options navigate an essential tension

between accessibility and difficulty. Ian Hamilton

explains that because games hinge on overcoming

challenges, any options at all interact with the

challenges the user experiences [3]. So for games,

finding that ideal experience that doesn’t block users

from playing but still provides a sense of challenge is

key to the design process. Other contexts by

comparison, such as websites or operating systems,

should not strive to be difficult at all.

3.1.3 Short-use contexts

On the other end of the spectrum of ODD and time-of-

use are websites. Websites are an example of a context

where ODD is not only rarely worth a user’s time, but

also goes against the philosophy of web accessibility

(which expects accessibility by default) [4].

Overlay solutions (which are not only riddled

with lawsuits and technical barriers [2]) largely rely on

an ODD approach: users are expected to adjust

accessibility settings (such as contrast, text size, and

animations) on their own every time they visit a new

webpage that uses an overlay. In addition to this,

overlays don’t share settings for the same user across

sites that use the same overlay, don’t inherit higher

level settings (for large font or high contrast) from the

operating system or browser, and have no standard for

sharing their settings with other overlay venders.

Largely, ODD has become a time-consuming

expense for users with disabilities on the web and

primarily absolves website owners and maintainers

from pursuing an accessible-by-design approach in the

first place (it is often the selling point of an overlay that

it can make your website “accessible with a single line

of code”).

3.2 Modularity & extensibility are also options
The customizability and modular nature of some games

or software, such Visual Studio Code or Bethesda’s

Fallout and Skyrim, are closely related to option-driven

design. With ability assumptions, a designer does not

expect user adaptations. With ability-based design, the

design expects specific adaptations and provides a way

for the system to adapt automatically. With option-

driven design, the designer expects specific adaptations

and provides a means for the user to enact those on the

system. Modularity and extensibility is a type of option-

driven design, except that the designer does not expect

specific adaptations but instead provides a means for

users themselves to identify and adapt the system. In

addition, modular systems also often provide a way for

users to share their adaptations with others. In this

sense, the burden in this model is placed on the system,

users, and community members and infrastructure.

 But for users who aren’t community

contributors, their experience of the options available to

them are similar to designer-curated options, except that

the documentation, functionality, and maintenance of a

given option are determined by the community instead

of the system’s dedicated or core designers.

VS Code as a software is built with reasonable

core defaults (as well as some pre-determined options)

but can also be almost wholly customized through

community-contributed extensions (and is designed to

encourage users to do this).

However, it is essential to note that extensions

and mods built by community members that are used

for accessibility purposes, such as Chrome’s Dark

Reader, pose important questions about who should be

responsible for the accessibility of a system, whether it

is ethical for software designers to rely on community-

designed extensions, and whether software builders

should rely on community-maintained extensions.

As an example, World of Warcraft’s most

competitive and difficult content has arguably been

intentionally designed around the expectation that

players will continue to be able to use a mod that is

built and maintained by a single person [7]. It may not

be ethical for software, after recognizing their access

barriers, to expect that the community continues to

maintain ways to navigate those barriers.

3.3 Inheritable options can take some of the
burden away from the user
In closed ecosystems, like Apple’s for example,

accessibility settings propagate between systems and

are inherited by centralized, set-once-and-forget

accessibility options. The iPhone alone has dozens of

accessibility settings that influence the entire interaction

design of applications. This is an ideal example.

 However, generally systems that scale struggle

to provide solutions that can also accommodate and fit

user’s needs and preferences [5]. Many ecosystems lack

standards for interoperability. Video games in particular

do not have persistence in settings across new games.

Players must continually search for and set their options

again with every new game they play, and many games

do not offer a standard or similar set of options. In

addition, since accessibility overlays on websites are

intended to serve the design of the website by default

and not the user, must have contrast, text size, and other

options set every time a user visits a new site. Overlay

vendors do not share a user’s settings with one another

(and should not for the sake of their privacy) but also

don’t inherit higher levels of settings that a user

specifies, such as using Windows High Contrast mode.

 But with the apparent demand for ODD’s

advantages in ideal settings, helping users navigate

access friction and contexts where their needs cannot

and should not be known, it is important for technical

standards for interoperability to arise within specific

domains. Video games may not benefit from

standardized elements and semantics at an individual

game level, but likely could benefit from

standardization at the level of a console or operating

system. Websites also are a context where there should

be more standardization to inherit both browser-level

and operating system-level user settings.

 By working towards inheritability and

solutions that can create more fluid adaptations, we can

retain many of the advantages of an ODD approach

while also still relieving the burdens placed on users.

4. Discussion & Suggestions
Option-driven design as a strategy for accessibility has

been sorely under-discussed in academic circles,

especially. And with the rise of both accessibility in

games and overlays for websites, knowing when to

suggest ODD and when to avoid it is still a murky

space for designers. I hope that this micro-paper

primarily serves to do a few things:

1. Invigorate research attention to look at how

users with disabilities interact with systems in

different contexts to get a better sense of when

ODD is an appropriate choice, despite the

burden placed on a user.

2. Stimulate a technical conversation around

standardizing inheritable options in

ecosystems like game consoles, so that users

don’t have to re-specify the same settings with

every new game.

3. Push designers and the general public to

critically engage contexts where ODD is used

to enable bad design practices, such as

overlays on websites or in applications that are

not accessible by default.

4. Imagine new paradigms for design that allow

more users more persistent control and

dynamic expressiveness over their

experiences. (In what contexts might users

want to be their own designers and how can

we shape technology to serve their goals?)

5. Conclusion
There is a sweet spot for option-driven design that must

be carefully considered. Everyone, from researchers,

engineers, designers, accessibility practitioners, to

players and users, should be able to recognize the

tradeoffs and considerations of option-driven design.

As a nearly ubiquitous interaction design pattern in

computing, it has risen in popularity to both solve

legitimate problems posed by complex interactive

systems and as a band-aid that enables poor design

practices to continue.

 It is important to look into the future and treat

option-driven design as just one strategy among many

that can be employed when engaging accessibility. It is,

after all, just an option. And it is one that should be

considered carefully.

Acknowledgements
I just want to give enormous thanks to Jonathan Zong

for being an ardent supporter of my musings. Thanks

also to Shuli Jones, Yunzhi Li, Joon Jang, Sanika

Moharana, and Franklin Li for feedback and discussion.

References
[1] Cynthia L. Bennett, Erin Brady, and Stacy M. Branham. 2018. Interdependence as a Frame for Assistive

Technology Research and Design. In Proceedings of the 20th International ACM SIGACCESS Conference

on Computers and Accessibility (ASSETS '18). Association for Computing Machinery, New York, NY,

USA, 161–173. https://doi.org/10.1145/3234695.3236348

[2] Karl Groves. 2021. Overlay fact sheet, Overlay Fact Sheet. Available at: https://overlayfactsheet.com/

(Accessed: April 18, 2023).

[3] Ian Hamilton. 2021. Difficulty vs accessibility, YouTube. YouTube. Available at:

https://www.youtube.com/watch?v=sPehhHZvKE8 Accessed: April 18, 2023.

[4] Ian Hamilton. 2022. “Websites don’t need accessibility options, that’s not how websites work.” A thread on

Twitter by @ianhamilton_, Accessed: March 4, 2023.

https://twitter.com/ianhamilton_/status/1631763159508828162

[5] D.L. Hickman and D.A. Hagerty. 2021. Standardised access: The tension between scale and fit. Ada Lovelace

Institute. Available at: https://www.adalovelaceinstitute.org/blog/standardised-access-tension-scale-fit/

Accessed: April 18, 2023.

[6] Travis Chi Wing Lau. 2023. “Access friction can be deeply painful: to feel as though your needs may in fact

conflict with another's. That your needs, that which sustains you, may make conditions less accessible for

another..” A thread on Twitter by @travisclau, Accessed: April 18, 2023.

https://twitter.com/travisclau/status/1646604032541184001?s=20

[7] Cass Marshall. 2018. World of warcraft community rallies for the creator of a beloved mod, Polygon. Polygon.

Available at: https://www.polygon.com/2018/9/25/17901552/world-of-warcraft-deadly-boss-mods-patreon

Accessed: April 18, 2023.

[8] Y. -S. Martín, J. M. del Alamo and J. C. Yelmo. 2014. Engineering privacy requirements valuable lessons from

another realm. 2014 IEEE 1st International Workshop on Evolving Security and Privacy Requirements

Engineering (ESPRE), Karlskrona, Sweden, pp. 19-24, https://doi.org/10.1109/ESPRE.2014.6890523.

[9] Playstation. The last of us part II - accessibility, PlayStation. Available at: https://www.playstation.com/en-

us/games/the-last-of-us-part-ii/accessibility/ Accessed: April 18, 2023.

[10] Grant Stoner. “When we think of accessibility, the first response is to always fight for OPTIONS, OPTIONS,

OPTIONS.” A thread on Twitter by @Super_Crip1994, Accessed: March 4, 2023.

https://twitter.com/Super_Crip1994/status/1463265279060889603

[11] Grant Stoner. “The mainline Pokémon games are INCREDIBLY accessible for physically disabled players, and

they really don't feature any form of accessible options.” A thread on Twitter by @Super_Crip1994,

Accessed: March 4, 2023. https://twitter.com/Super_Crip1994/status/1463265281095180290

[12] Valentine, R. (2021) Digital Games spending reached $127 billion in 2020, GamesIndustry.biz. SuperData.

Available at: https://www.gamesindustry.biz/digital-games-spending-reached-usd127-billion-in-2020

(Accessed: April 29, 2023).

[13] Jacob O. Wobbrock, Krzysztof Z. Gajos, Shaun K. Kane, and Gregg C. Vanderheiden. 2018. Ability-Based

Design. Communications of the ACM. (May 2018), 9 pages. https://doi.org/10.1145/3148051

[14] Jacob O. Wobbrock, Shaun K. Kane, Krzysztof Z. Gajos, Susumu Harada, and Jon Froehlich. 2011. Ability-

Based Design: Concept, Principles and Examples. ACM Trans. Access. Comput. 3, 3, Article 9 (April 2011),

27 pages. https://doi.org/10.1145/1952383.1952384

https://doi.org/10.1145/3234695.3236348
https://www.youtube.com/watch?v=sPehhHZvKE8
https://twitter.com/ianhamilton_/status/1631763159508828162
https://www.adalovelaceinstitute.org/blog/standardised-access-tension-scale-fit/
https://twitter.com/travisclau/status/1646604032541184001?s=20
https://www.polygon.com/2018/9/25/17901552/world-of-warcraft-deadly-boss-mods-patreon
https://doi.org/10.1109/ESPRE.2014.6890523
https://www.playstation.com/en-us/games/the-last-of-us-part-ii/accessibility/
https://www.playstation.com/en-us/games/the-last-of-us-part-ii/accessibility/
https://twitter.com/Super_Crip1994/status/1463265279060889603?s=20
https://twitter.com/Super_Crip1994/status/1463265281095180290?s=20
https://doi.org/10.1145/3148051
https://doi.org/10.1145/1952383.1952384

	1. What is Option-Driven Design (ODD)?
	2. What is the context of accessibility & Option-Driven Design?
	2.1 Automatically-adapting systems are not always an appropriate design choice
	2.2 Options should not compensate for inaccessible design

	3. Design Considerations & Tradeoffs
	3.1 Time-of-use is a key variable
	3.1.1 Long-use contexts
	3.1.2 Medium-use contexts
	3.1.3 Short-use contexts

	3.2 Modularity & extensibility are also options
	3.3 Inheritable options can take some of the burden away from the user

	4. Discussion & Suggestions
	5. Conclusion
	Acknowledgements
	References

